This article was downloaded by:

On: 28 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Application of Phase Transfer Catalysis in Heterocyclic Synthesis: Synthesis of Some New Polyfunctional Thiophenes, Thiopyrans, Pyridines and Oxazines

O. A. Abd Allaha; A. M. El-Sayeda

^a Chemistry Department, Faculty of Science, South Valley University, Sohag, Egypt

Online publication date: 27 October 2010

To cite this Article Allah, O. A. Abd and El-Sayed, A. M.(2002) 'Application of Phase Transfer Catalysis in Heterocyclic Synthesis: Synthesis of Some New Polyfunctional Thiophenes, Thiopyrans, Pyridines and Oxazines', Phosphorus, Sulfur, and Silicon and the Related Elements, 177: 5, 1291 - 1301

To link to this Article: DOI: 10.1080/10426500211732 URL: http://dx.doi.org/10.1080/10426500211732

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phosphorus, Sulfur and Silicon, 2002, Vol. 177:1291–1301 Copyright © 2002 Taylor & Francis 1042-6507/02 \$12.00 + .00

DOI: 10.1080/10426500290092578

APPLICATION OF PHASE TRANSFER CATALYSIS IN HETEROCYCLIC SYNTHESIS: SYNTHESIS OF SOME NEW POLYFUNCTIONAL THIOPHENES, THIOPYRANS, PYRIDINES AND OXAZINES

O. A. Abd Allah and A. M. El-Sayed Chemistry Department, Faculty of Science, South Valley University, Sohag, Egypt

The reaction of compound 1 with CS₂ and different active halo compounds gave the corresponding thiophene derivatives 2a,b-4a,b, whereas treatment of compound 1 with CS₂ and active methylene compounds afforded the corresponding thiopyran derivatives 5a,b, 6a,b, 7, and 8. Also, 1,3-thioxane derivatives 9 and 10 were obtained by reacting compound 1 with CS₂ and different cycloalkanones. Thiophene and pyrrolidene derivatives 11, 12a,b, and 13a,b were obtained by reacting compound 1 with phenyl isothiocyanate and different halo compounds. The active methylene compounds and/or cycloalkanones were treated with compound 1 in the presence of phenyl isothiocyanate to give pyridines, thiopyran and oxazine derivatives 14a,b-16a,b, 17a-19a, and 19b, respectively.

Keywords: CS₂; diethyl cyanoacetate; ethyl chloroformate; PTC; spiro compounds

Ketoketene¹ or cyanoketene² acetals, as well as heterocyclic ketene N, N,^{3,4} or N,S-acetals,^{3–8} have important applications in heterocyclic synthesis. Our present work deals with the synthesis of new series of thiophenes, thiopyrans, thioxanes, pyridines, and oxazines starting with the related ethyl cyanomalonate, using a solid-liquid phase-transfer catalysis technique.

RESULTS AND DISCUSSION

Diethyl cyanomalonate 1 was synthesized by treating ethyl cyanoacetate with ethyl chloroformate in 1:1 molar ratio using solid-liquid

Address correspondence to O. A. Abd Allah, Chemistry Department, Faculty of Science, South Valley University, Sohag, Egypt. E-mail: omymatif@yahoo.com

phase-transfer catalysis conditions [benzene/K₂CO₃/tetrabutyl ammonium bromide (TBAB)] (cf. Scheme 1).

SCHEME 1

On treating compound 1 with CS_2 and different halo compounds including phenacyl bromide, chloroacetonitrile, or chloroacetamide in 1:1:1 molar ratio in one pot procedure using solid-liquid PTC conditions [DMF/ K_2CO_3 /tetrabutylammonium bromide (TBAB)], 3-amino-4-dicarbethoxy thiophene **2a–4a** and 3-hydroxy-4-cyano-4-carbethoxy derivatives **2b**, **3b** were obtained respectively (cf. Scheme 2).

NC
$$+$$
 CS_2 \xrightarrow{PTC} NC \xrightarrow{NC} \xrightarrow{NC}

SCHEME 2

The reaction pathway was assumed to proceed through two steps: firstly the formation of dithioic acid⁹ (intermediate L) followed by alkylation of the SH group with the halo compound. The second step is either a nucleophilic addition of the active methylene group at the cyano group to form thiophene derivatives **2a** and **4a** or a nucleophilic attack of the active methylene group at the CO ester group with the elimination of an ethanol molecule to give compounds **2b**, **3b** respectively. All products were confirmed by IR, ¹H-NMR and elemental analysis.

Treatment of compound 1 with CS_2 and the active methylene compounds ethyl cyanoacetate or malononitrile in a 1:1:1 molar ratio using the same PTC reaction conditions gave the corresponding thiopyran

derivatives **5a,b** and **6a,b** respectively. The compounds **5a** and **6a** were obtained from the organic layer in 52% yield and compounds **5b** and **6b** were separated by acidifying the K_2CO_3 layer with dilute acetic acid in 48% yield (cf. Scheme 3).

The reaction pathway was assumed to proceed via a nucleophilic attack of the SH group of the dithioic acid at the CO ester group with elimination of an ethanol molecule, followed by cyclization through a nucleophilic attack of the CH₂ group at the cyano group or CO ester group affording compounds **5a** or **5b**. The formation of compounds **6a,b** was assumed to proceed via the attack of the SH group of the dithioic acid at the CN group, followed by another nucleophilic attack of the methylene group at either the cyano group to give compound **6a** or the

SCHEME 3

Meanwhile, thiopyran derivatives **7** or **8** were obtained in good yield by reacting compound **1** with CS₂ and ethyl acetoacetate or diethyl malonate in 1:1:1 molar ratio using the same experimental phase-transfer catalysis conditions (cf. Scheme 4).

CO ester group to form compound 6b.

1 +
$$CS_2$$
 + $XCH_2COOC_2H_5$ PTC $C_2H_5O_2C_5$ 7&8

7, X= $COCC_3H_5$ 8, X= $COOC_2H_5$

SCHEME 4

Spiro 1,3-thioxane $\bf 9$ and $\bf 10$ were obtained by treating compound $\bf 1$ with CS_2 and cyclopentanone or cyclohexanone under PTC conditions.

The reaction pathway was assumed to proceed via the attack of the SH group of the intermediate dithioic acid at the CO group to give the adduct M which underwent intramolecular cyclization through the nucleophilic attack of the OH group at the other ethoxycarbonyl group to give the final products **9** or **10** (cf. Scheme 5). IR and ¹H-NMR spectra of all the products were consistent with the proposed structures (cf. Table I).

Moreover, compound 1 was allowed to react with phenyl isothiocyanate and halo compounds, including chloroacetonitrile, chloroacetamide or phenacyl bromide in 1:1:1 molar ratio under solid liquid, phase-transfer catalysis conditions [DMF/ K_2CO_3 /tetrabutyl-ammonium bromide (TBAB)] to give the corresponding thiophene derivatives 11, 12a, or 13a as major products and pyrrolidene derivatives 12b or 13b as minor ones (cf. Scheme 6).

SCHEME 5

SCHEME 6

TABLE I Analytical and Spectral Data of the Prepared Compounds

Compound Reaction	Reaction	m.p.ª	Yield		Analytical data calc. (found) b %	al date	a calc. (f	% _q (punc	IR	$^{1} ext{H-NMR}~(ext{DMSO-de})^{d}$
no.	time (h)	(cr	(%)	$M_F/(M_{\rm w})$	С	Н	N	\mathbf{s}	$(\mathrm{KBr})~\nu~(\mathrm{cm}^{-1})^c$	δ (mdd) δ
1	4	305 DMF	73	$C_8H_{11}NO_4 \ (185.18)$	$\begin{array}{ccc} 51.88 & 5.98 \\ (51.40) & (5.71) \end{array}$	5.98	7.56 (7.18)		2988 (CH), 2197 (CN), 1691 (2C=O)	4.3-3.7 (q, 4H, 2CH ₂), 2.9-2.4 (s, 1H, CH),
2a	4	160–162 dioxane	42	$ m C_{17}H_{17}NS_2O_5 \ (379.45)$	53.81 4.52 3.69 (53.32) (4.41) (3.39)	4.52	3.69	16.90 (16.71)	$3490 \text{ (NH}_2), 3053 \text{ (CH),} \\ 2950 \text{ (CH), } 1700 \text{ (2C=O),} \\ 1632 \text{ (C=O)}$	∞
2b	4	103–105 ethanol	50	$\substack{\text{C}_{15}\text{H}_{11}\text{NS}_2\text{O}_4\\(333.38)}$	54.40 3.33 4.20 (54.53) (3.54) (4.59)	3.33	4.20 (4.59)	19.20 (19.41)	3462 (OH), 3066 (CH), 2985 (CH), 2200 (CN), 1700, 1682 (2C=O),	2.7-1.7 (f, 6H, 2CH ₃) 8.3-6.1 (m, 5H, arom.), 4.0-2.8 (q, 2H, CH ₂), 2.6-2.3 (s, 1H, OH),
3a	9	200 dioxane	45	$\begin{array}{cccc} C_{11}H_{12}N_2S_2O_4 & 43.99 & 4.20 \\ (300.35) & (43.50) \ (4.22) \end{array}$	43.99 4.20 9.32 (43.50) (4.22) (9.67)	4.20	9.32 (9.67)	21.34 (21.64)	1150 (C=S) 3427, 3327 (NH ₂), 3150 (CH), 2949 (CH), 2187 (CN), 1680 (C=O),	1.6-0.7 (t, 3H, CH ₃) 4.7-4.0 (q, 4H, 2CH ₂), 3.8-3.1 (br, 2H, NH ₂), 2.2-1.0 (t, 6H, 2CH ₃)
3b	9	220 dioxane	51	${ m C_9H_6N_2O_3S_2} \ (254.29)$	42.51 2.38 11.02 (42.38) (2.20) (11.18)	2.38	11.02	25.22 (25.12)	1111 (C=S) 3429 (OH), 2955 (CH), 2195 (CN), 1700	3.7-3.3 (br. 1H, OH), $2.7-2.0$ (q, 2H, CH ₂),
4a	9	133 ethanol	99	$C_{11}H_{14}N_2S_2O_5$ 41.49 4.43 (318.37) (42.25) (4.71)	41.49 4.43 (42.25) (4.71)	4.43	8.79	20.14 (20.05)	(CH), 1062 (CES) 3420, (2NH ₂), 2951 (CH), 1700, 1645 (3C=O), 1051 (C=S)	1.0-1.0(1.5) $1.0-1.0(1.5)$ $1.0-1.0(1.5)$ $1.0-1.0(1.5)$ $1.0-1.0(1.5)$ $1.0-1.0(1.5)$ $1.0-1.0(1.5)$
5 8	rO	160 ethanol	52	$C_{12}H_{12}N_2S_2O_5$ 43.89 3.68 (328.36) (43.48) (3.98)	43.89 3.68 8.53 (43.48) (3.98) (8.73)	3.68	8.53 (8.73)	19.50 (19.63)	3426, 3326 (NH ₂), 2988 (CH), 2212 (CN), 1665 (3C=O), 1180 (C=S)	1.0-1.0 (t, 0H, 2CH ₃) 8.0-7.5 (br, 2H, NH ₂), 4.5-3.7 (q, 4H, 2CH ₂), 1.2-0.3 (t, 6H, 2CH ₃)
										(Continued on next page)

TABLE I Analytical and Spectral Data of the Prepared Compounds (Continued)

Compound Beaction	Reaction	m.n.a	Yield		Analyti	cal dat	a calc. (f	Analytical data calc. (found) b %	TR.	¹ H-NMB (DMSO-d _c) ^d
no.	time (h) (crys.	(crys. solvent)	(%)	$M_{\rm F}/(M_{\rm w})$	С	Н	Z	S	$(\mathrm{KBr}) \ \nu \ (\mathrm{cm}^{-1})^c$	δ (ppm)
5b	5	166 dioxane	43	$C_{10}H_6N_2S_2O_4\\(282.29)$	42.55 2.14 9.92 (42.06) (2.35) (9.54)	2.14 (2.35)	9.92 (9.54)	22.71 (22.84)	3451 (OH), 2992 (CH), 2212 (CN), 1655 (C=O),	$4.8-4.1$ (q, $2H$, CH_2), $4.0-3.7$ (s, $1H$, OH),
6 a	9	240 dioxane	52	$\begin{array}{ccc} C_{12}H_{13}N_3S_2O_4 & 44.03 & 4.00 \\ (327.38) & (44.33) & (4.13) & \end{array}$	44.03 4.00 12.83 (44.33) (4.13) (12.32)	4.00 (4.13) (12.83	19.58 (19.79)	3449 (NH ₂ , NH), 2982 (CH), 2197 (CN), 1700 (2C=O), 1093 (C=S)	6.
q 9	9	200 xylene	43	$C_{10}H_7N_3S_2O_3\\(281.30)$	_	42.69 2.50 14.93 (42.33) (2.71) (14.78)	14.93 (14.78)	22.79 (22.61)	3308 (OH), 3173 (NH), 2210 (CN), 1680 (C=O)	(t, 6H, 2CH ₃) 6.2 (s, 1H, NH), 4.8 (s, 1H, OH), $3.5-2.7$ (q, 2H, CH ₂),
7	9	280 dioxane	89	$C_{11}H_9NS_2O_5 \ (299.32)$	44.14 3.03 4.68 (44.56) (3.34) (4.46)	3.03	4.68 (4.46)	21.42 (21.55)	3453, 3353 (OH), 2970 (CH), 2201 (CN), 1693 (C=O),	5.0-4.1 (q, 2H, CH ₂), 4.0-3.4 (s, H, OH), 2.4 (s, 3H, CH ₃),
œ	9	140 ethanol	71	$\substack{\text{C}_{12}\text{H}_{11}\text{NS}_2\text{O}_6\\(329.35)}$	43.76 3.36 4.25 (44.00) (3.67) (4.46)	3.36 (3.67)	4.25 (4.46)	19.46 (19.68)	1080 (C=S) 3451 (OH), 2966 (CH), 2203 (CN), 1682 (C=O),	$1.8-0.8 \text{ (t, 3H, 3H_3)}$ $4.3-3.5 \text{ (q, 4H, 2CH_2)}$, $3.4-3.0 \text{ (s, 1H, OH)}$,
6	L -	160 ethanol	54	$\mathrm{C_{12}H_{13}NS_{2}O_{4}}$ (299.36)	48.15 4.37 4.68 (48.46) (4.56) (4.88)	4.37	4.68	21.41 (21.70)	1088 (C=S) 2964 (CH), 2201 (CN), 1680 (C=O), 1086 (C=S)	4.3-3.7 (q, 2H, ZCH ₃) 4.3-3.7 (q, 2H, CH ₂), 3.5-2.7 (m, 8H, cyclopentyl),
10	7	304 ethanol	09	$\substack{\text{C}_{13}\text{H}_{15}\text{NS}_2\text{O}_4\\(313.39)}$		49.82 4.82 4.46 (50.30) (5.02) (4.60)	4.46 (4.60)	20.46 (20.67)	3110 (CH), 2970 (CH), 2203 (CN), 1693	$1.4-0.3 \text{ (t, 3H, CH}_3)$ $4.9-4.0 \text{ (q, 2H, CH}_2)$, $2.0-0.7 \text{ (t, 13H, CH}_3 + \frac{1}{2} +$
11	ъ	103–105 dioxane	77	$C_{21}H_{16}N_{2}SO_{4}$ 64.27 4.11 (392.44) (64.40) (4.08)	64.27 4.11 7.14 (64.40) (4.08) (7.28)	4.11 (4.08)	7.14 (7.28)	8.17 (8.28)	(C=O), 1038 (C=O) 3436 (OH), 3060 (CH), 2950 (CH), 2188 (CN), 1652 (C=O)	Cyclone 2, y 1) 7.1-6.3 (m, 10H, arom.), 4.1-3.2 (q, 2H, CH ₂), 3.0-2.5 (br, H, OH), 1.6-0.9 (t, 3H, CH ₃)

3420, 3315 (NH ₂), 9.0-7.9 (m, 5H, arom.), 2963 (CH), 2189 (CN), 5.2-4.5 (br, 2H, NH ₂), 1687 (C=O) $4.4-3.5$ (q, 4H, 2CH ₂), 2.4-0.8 (t. 6H, 2CH ₂)	3414, 3314 (NH ₂), 2945 9.2-7.6 (m, 5H, arom.), (CH), 2185 (CN), 1680 5.0-3.6 (m, 6H, 2CH ₂ + (C=O) NH ₂), 2.7-1.3 (t, 6H, 2CH ₂ + (C=O) 2.7-1.3 (t, 6H, 2CH ₂)	3439, 3300 (NH ₂), 2950 9.2-8.6 (m, 5H, arom.), (CH), 1670 (C=O), 3.8-3.7 (m, 6H, 2CH ₂ + 1620 (C=O), 1200 NH ₂), 3.2-2.8 (s, 2H, (C=S) NH ₂), 1.5-0.4 (t, 6H, 9CH ₂)	3520 (OH), 3429, 3320 8.5-7.1 (m, 5H, arom.), (NH ₂), 3060 (CH), 4.4-3.7 (q, 2H, CH ₂), 2982 (CH), 2199 (CN), 3.7-3.2 (s, 2H, NH ₂), 1700 (C=O), 1674 3.2-3.0 (s, 1H, OH), (C=O), 1091 (C=S)	2), 8.0	$3441, 3340 (NH_2),$ $9.3-9.0 (br, 1H, NH),$ $3290 (NH), 2964$ $8.6-7.3 (m, 5H, arom.),$ $(CH), 2168 (CN),$ $4.6-3.8 (q, 4H, 2CH_2),$ $1684 (C=O), 1097$ $3.8-3.1 (br, 2H, NH_2)$	H), 3030 (CH), 8. CH), 2191 (CN), C=O), 1080
8.92 (9.01)	8.92 (8.74)	8.49 (8.61)	9.67	9.48 (9.62)	8.30 (8.17)	8.6 (8.14)
56.81 4.76 11.69 (56.48) (4.65) (11.70)	4.76 11.69 (4.88) (11.49)	54.10 5.07 11.13 (54.60) (5.38) (11.34)	54.37 3.95 12.68 (54.76) (4.14) (12.96)	56.80 3.57 20.70 (57.00) (3.48) (20.50)	(55.69) (4.56) (14.68)	(3.03) (7.38)
56.81	56.81	54.10 (54.60)	54.37	56.80	55.95	
$C_{17}H_{17}N_3SO_4$ 56.81 (359.40) (56.48)	$ ext{C}_{17} ext{H}_{17} ext{N}_3 ext{SO}_4 \ (359.40)$	$C_{17}H_{19}N_3SO_5$ (377.42)	$C_{15}H_{13}N_3SO_4$ 54.37 (331.35) (54.76)	$\substack{\text{C}_{16}\text{H}_{12}\text{N}_5\text{SO}_2\\(338.37)}$	$C_{18}H_{18}N_4SO_4$ 55.95 (386.43) (55.69)	$C_{18}H_{16}N_{2}SO_{6}$ 55.56 (388.41) (55.76)
39	48	39	51	46	44	35
214 dioxane	292 ethanol	125 ethanol	201 dioxane	285 dioxane	220 dioxane	145 ethanol
9	9	9	9	9	9	9
12a	12b	13a	13b	14a	14b	1297

TABLE I Analytical and Spectral Data of the Prepared Compounds (Continued)

Compound Beaction	Reaction	m n a	Vield		Analyti	cal data	a calc. (fe	Analytical data calc. (found) b %	Æ	1 H-NWR (DMSO-d $_{ m c}$) d
no.	time (h) (crys.	(crys. solvent)	(%)	$M_F/(M_{\rm w})$	С	Н	Z	S	$(\mathrm{KBr}) \ ^{ u} (\mathrm{cm}^{-1})^c$	$\delta(\mathrm{ppm})$
15b	9	160 dioxane	62	$^{\mathrm{C}_{20}\mathrm{H}_{22}\mathrm{N}_{2}\mathrm{SO}_{7}}_{(434.47)}$	56.61 5.10 6.44 (57.23) (5.30) (6.63)	5.10 (5.30)	6.44 (6.63)	7.37 (7.46)	3429, 3330 (NH ₂), 3020 (CH), 2961 (CH), 1700 (C=O), 1064 (C=S)	9.4-8.7 (m, 5H, arom.), 5.0-4.3 (q, 4H, 2CH ₂), 4.1-3.7 (s, 2H, NH ₂), 3.3-2.7 (q, 2H, CH ₂), 9.3-0 0 (t, 9H, 3CH ₂),
16b	9	185 ethanol	78	${ m C_{18}H_{17}N_3SO_5} \ (387.42)$	55.80 4.42 10.85 55.64 (4.50) (10.64)	4.42 (4.50) (10.85	8.28 (8.42)	3424, 3330 (NH ₂), 3057 (CH), 2978 (CH), 2179 (CN), 1676 (C=O), 1093 (C=S)	8.4-7.2 (m, 5H, arom.), 4.5-3.7 (q, 4H, 2CH ₂), 3.5-2.8 (br, 2H, NH ₂), 1.5-0.7 (t, 6H, 2CH ₂)
17	9	263 ethanol	92	$\substack{\text{C}_9\text{H}_6\text{NSO}_5\\(240.21)}$	45.00 2.52 5.83 (45.40) (2.63) (6.00)	2.52 (2.63)	5.83	13.34 (13.44)	3433 (OH), 2980 (CH), 2197 (CN), 1750, 1701 (C=0)	8.7 (s, 1H, CH), 5.0-4.1 (q, 2H, CH ₂), 3.9 (s, 1H, OH). 1.7-0.9 (t, 3H, CH ₃)
18a	ro	285 dioxane	69	$ m C_{18}H_{18}N_{2}SO_{4}$ (358.42)	(60.50) (5.11) (7.93)	5.06 (5.11)	7.81 (7.93)	8.95 (8.72)	2970 (CH), 2197 (CN), 1710 (C=O), 1680 (C=O), 1099 (C=S)	9.0-7.5 (m, 5H, arom.), 4.6-4.0 (q, 2H, CH ₂), 4.0-3.7 (t, 4H, 2CH ₂), 3.7-3.0 (m, 4H, 2CH ₂), 1.3-0.7 (t, 3H, CH ₃)
19a	ಸರ	80 dioxane	83	$C_{19}H_{20}N_2SO_4$ 61.27 5.41 (372.45) (61.40) (5.22)	61.27 5.41 (61.40) (5.22)	5.41 (5.22)	7.52 (7.70)	8.61 (8.42)	2953 (CH), 2189 (CN), 1689 (C=O), 1070 (C=S)	8.6-7.7 (m, 5H, arcm.), 4.5-4.0 (q, 2H, CH ₂), 4.0-3.1 (m, 12H, NH ₂ + cyclohexyl), 1.4-1.0 (t, 3H, CH ₂)
19b	ಗಾ	280 ethanol	09	$ m C_{21}H_{26}N_{2}SO_{5} \ (402.51)$	62.66 6.51 6.95 (63.01) (6.60) (6.76)	6.51 (6.60)	6.95 (6.76)	7.96 (7.85)	3443 (NH), 3110 (CH), 2957 (CH), 1689 (C=O), 1074 (C=S)	14.1 (s, 1H, NH), 8.5-7.7 (m, 5H, arom.), 4.7-3.9 (q, 4H, 2CH ₂), 3.7-3.0 (m, 10H, cyclohexyl), 1.3-1.0, (t, 6H, 2CH ₃)

 $[^]a$ Uncorrected.

bSatisfactory microanalysis obtained. ± 0.35 , H; ± 0.4 ; N; ± 0.2 ; S; ± 0.32 .

 $[^]c$ Measured on Nicolet 710 FT-IR spectrophotometer: d Measured by a varian EM 360L spectrometer at 60 MHz using TMS as internal standard and DMSO $\rm d_6$ as solvent.

Treatment of compound 1 with phenyl isothiocyanate along with the active methylene, malononitrile, diethyl malonate¹⁰ or ethyl cyanoacetate in a 1:1:1 molar ratio, gave the corresponding polyfunctional pyridines 14a, b-16a, b (cf. Scheme 7).

On treating compound **1** with phenyl isothiocyanate and ethyl aceto-acetate under the usual PTC conditions, the corresponding 3-carbethoxy-3-cyano-4-hydroxythiopyrane 2,5-dione **17** was obtained¹¹ (cf. Scheme 8).

SCHEME 8

1,3-Oxazine derivatives **18a**,**b** or **19a**,**b** were obtained by treating compound **1** with phenyl isothiocyanate and cyclopentanone or cyclohexanone under the same PTC conditions (cf. Scheme 9).

18a n=1 X=O ,Y=CN 19a n=2 X=O, Y=CN 19b n=2 X=NH, Y= $^{\text{CO}}_2^{\text{C}}_2^{\text{H}}_5$

SCHEME 9

IR and ¹H-NMR of all products were in agreement with the suggested structures (cf. Table I).

EXPERIMENTAL

Synthesis of Diethyl Cyanomalonate (1)

A mixture of ethyl cyanoacetate (0.01 mol), ethyl chloroformate (0.01 mol), anhydrous potassium carbonate (3 gm), and a catalytic amount of TBAB, in benzene (20 mL) was stirred for 4 h at 50° C. The reaction mixture was filtered off. The separated carbonate was dissolved in water (60 ml) and filtered. The separated solid was crystallized from ethanol (cf. Table I).

Phase Transfer Catalysis Technique

General Procedure

To a stirred solution of compound 1 (0.01 mol) in dimethylformamide (30 ml) was added anhydrous potassium carbonate (3 g), a catalytic amount of TBAB and (0.01 mol) of CS_2 or phenylisothiocyanate. The formed dianionic ambident compound was then treated with (0.01 mol) of halo compounds (including phenacyl bromide, chloroacetonitrile or chloroacetamide), active methylene compounds (namely, ethyl cyanoacetate, malononitrile, ethyl acetoacetate or diethyl malonate) or cycloalkanone (cyclopentanone or cyclohexanone). The reaction mixture was stirred over periods of time (cf. Table I).

At the end of the reaction (TLC), the organic layer was separated and evaporated in vaccuo. The residue was treated with water, filtered, and crystallized from a suitable solvent, to give **2a,b**, **3a,b**, **4a**, **11**, **12a,b**–**15b**, **16b**, **19b**, **5a**, and **6a**.

The solid potassium carbonate layer was dissolved in water and filtered. The solid products were crystallized from the suitable solvents, where compounds **12a–15a**, **18**, **19a** were obtained. The filtrate was treated with diluted AcOH and left for 12–24 h at room temperature. The separated solid was filtered off and crystallized from the appropriate solvent, where compounds **5b**, **6b** were obtained.

- **M.S.—Compound 7:** m/e (relative intensity)%:299(5.30), 292(20.50), 290(98.70), 259(54.90), 190(15.10), 149(39.70).
- **M.S.—Compound 14a:** m/e (relative intensity)% : 339(0.40)(M+1), 307(2.10), 256(13.60), 236(7.10), 185(6.30), 149(18.30).
- **M.S.—Compound 16b:** m/e (relative intensity)%: 388(1.00), 334(5.50), 304(27.1), 142(100), 135(33.90), 118(4.00).

REFERENCES

- [1] J. Thuiller and Vialle, Bull. Soc. Chim. Fr., 1398 (1959).
- [2] G. Kobayashi, Y. Matsuda, and R. Vatsuki, Chem. Pharm. Bull. (Tokyo), 21, 921 (1973).
- [3] M. Augustin and W. Doelling, J. Prakt. Chem., 324, 3 (1982).
- [4] S. Rajappa and B. G. Advani, Proc. Indian Acad. Sci. (Chem. Sci.), 91, 463 (1982).
- [5] K. Hiral, H. Matsuda, and Y. Kishda, Chem. Pharm. Bull. (Tokyo), 20, 97 (1971).
- [6] N. B. Mansour, W. D. Rudorf, and M. Z. Augustin, Z. Fur. Chem., 21, 69 (1981).
- [7] A. K. El-Shafei, A. M. El-Sayed, and A. M. M. El-Saghier, Phosphorus, Sulphur, and Silicon, 90, 213 (1994).
- [8] A. M. El-Sayed, Phosphorus, Sulphur, and Silicon, 163, 29 (2000).
- [9] R. Karl Dieter, Tetrahedron, 42, 3029 (1986).
- [10] O. A. Abd Allah, Il Farmaco, 55, 641 (2000).
- [11] I. R. Bellobono and G. Favini, Tetrahedron, 25(1), 57 (1969).